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Following previous papers by Axisa, Antunes and co-workers, the authors address a theoretical
model for immersed rotors, under moderate confinement, using simplified flow equations on the
gap-averaged fluctuating quantities. However, in contrast to our previous efforts, the nonlinear
terms of the flow equations are here fully accounted. Because such nonlinear analysis is quite
involved, this paper will focus on the simpler case of planar motions, in order to emphasize the
main aspects of our approach. A direct integration of the continuity and momentum equations
leads to extremely lengthy formulations. Here, in order to solve the flow equations, we perform
an exact integration of the continuity equation and an approximate solution of the momentum
equation, based on a Fourier representation of the azimuthal pressure gradient. Then, an exact
formulation for the dynamic flow force can be obtained. Our solution is discussed in connection
with physical phenomena. Numerical simulations of the nonlinear rotor-flow coupled system
are presented, showing that the linearized and the fully nonlinear models produces similar
results when the eccentricity and the spinning velocity are low. However, if such conditions are
not met, the qualitative dynamics stemming from these models are quite distinct. Experimental
results indicate that the nonlinear flow model leads to better predictions of the rotor dynamics
when the eccentricity is significant, when approaching instability and for linearly unstable
regimes. © 1999 Academic Press

1. INTRODUCTION

VIBRATION OF ROTATING SHAFTS subjected to fluid—structure interaction is a physical problem
of both theoretical significance and practical importance. By far, the most dangerous
problems arise when rotor velocities lead to unstable regimes, with possible catastrophic
consequences [ see, for example, books by Vance (1988), Goodwin (1989), Fréne et al. (1990),
Lalanne & Ferraris (1990), Childs (1993) and Hamrock (1994)]. A large amount of research
work has been performed for very small gap configurations, such as found in bearings and
seals. Several aspects of research in this area may be found, for example, in papers by
Badgeley & Booker (1969), Holmes (1970), Brindley et al. (1983), Childs (1983), Myers
(1984), Nelson (1985), Muszinska (1988), Nordmann et al. (1989) and Baskharone & Hensel
(1991).
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Larger gap geometries—which are of interest in pump systems and several other indus-
trial applications—are not so well decumented. For these conigurations, the reduced gap
0 = H/R (where H is the average annular gap and R is the rotor radius) is typically 0-1—two
orders of magnitude greater than in bearings (where 6 ~ 0-001). As a consequence, vibra-
tions in larger gap geometries are characterized by values of the Reynolds number which are
much greater than in bearing configurations. Therefore, while the dominant forces in
bearings stem from fluid viscosity, inertial fluid effects are of paramount importance in
larger gap annulus, leading to a specific dynamic behaviour of such systems.

Work on rotor dynamics under moderate fluid confinement was pioneered by Black
(1969), Fritz (1970) and Hirs (1973), who stated the basic simplifying assumptions to model
the flow in the annular gap. Further relevant work was presented by Ramsden et al. (1974,
1975). In several previous papers (Grunenwald et al. 1991; Axisa & Antunes 1992; Grunen-
wald 1994; Antunes et al. 1996), the authors have developed a thorough analysis of these
systems, under the assumption of centered or eccentric fluid annuli. In those papers, rotor
dynamics were modelled using linearized flow equations on the gap-averaged fluctuating
quantities. Such simplified models enabled us to predict with reasonable success the modal
parameters of the coupled system and the stability boundaries, as a function of the annulus
geometry and rotor spinning velocity .

Experimental validation has been provided, with a reasonable agreement (Antunes et al.
1992, 1995; Grunenwald et al. 1996). However, our experiments have also shown a progress-
ive deterioration of the theoretical predictions at high spinning velocities, as well as at large
eccentricities (see Figure 1). In spite of some experimental inadequacies, it is reasonable to
suspect that such deterioration might be due to nonlinear effects which became significant
near and beyond the stability boundaries. Hence, better predictions might be produced if
the nonlinear terms of the flow equations were fully accounted—an issue which is pursued
in our recent work. Because such nonlinear analysis is quite involved, this paper will focus
on the simpler case of planar motions, in order to emphasize the main aspects of the
problem.

In our previous work, a perturbation analysis was used, in which the fluid forces were the
result of a steady flow field (dependent on the rotor eccentricity ¢) and a fluctuating flow
field, which was computed using the linearized fluid equations. From such an approach, we
obtained the coupling coefficients of the added mass matrix, a damping/gyroscopic matrix
and a stiffness/circulatory matrix. Complex eigenvalue analysis enabled the computation of
modal frequencies and damping ratios of the coupled system as a function of the rotor
spinning velocity and other parameters. The stability of the rotor was also as-
serted—specifically, both static (divergence) or dynamic (flutter) instabilities were predicted,
depending on the ranges of parameters 2, 6 and e.

A solution of the fully nonlinear flow equations is more complex. Indeed, the direct
integration of the continuity and momentum equations leads to extremely lengthy formula-
tions, which are difficult to manipulate—even using symbolic computational tools. In
this paper, we discuss a number of strategies to obtain approximate nonlinear solutions
of the flow equations. We proceed with the actual approach used, which consists of the
exact integration of the continuity equation and an approximate solution of the momentum
equation, based on a Fourier representation of the azimuthal pressure gradient. We then
obtain an exact formulation for the dynamic fluid force. Also, we present an analytical
solution for squeeze-film dampers, which stems from the general formulation when
Q=0.

The solutions obtained are discussed in conjunction with physical phenomena. Numer-
ical simulations of the nonlinear system dynamics are presented, which display some
interesting features. In particular, the linearized and the fully nonlinear model produce very
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Figure 1. Modal frequencies as a function of the rotor spinning velocity (—, linear theory; *, experiments): (a)

orbital motions: centred flow annulus using a rotor mounted on mildly asymmetric supports; (b) planar motions:
eccentric flow annulus using a rotor mounted on very asymmetric supports.



106 J. ANTUNES ET AL.

similar results when the eccentricity and the spinning velocity are low. However, if such
conditions are not met, the qualitative behaviour stemming from these models is quite
distinct. Experimental results show that the nonlinear flow model leads to better predictions
of the rotor dynamics when the eccentricity is significant, when approaching instability and
also for linearly unstable regimes.

2. FLOW FORMULATION

The structure of co-rotating annular flows between coaxial nonvibrating cylinders is
strongly dependent on the Reynolds number and the Taylor number of the flow, expressed

as Re = 2HV/v and Ta = Re ./ H/R (where V is an average flow velocity, dependent on the
spinning velocity € of the inner cylinder)—see, for instance, Taylor (1936), Chandrasekhar
(1961), Schlichting (1979), Tritton (1988), Sherman (1990) or Fréne (1990). For low values of
Re and Ta, Re <4000 and Ta < 41, when the inner cylinder rotates, the basic two-
dimensional Couette flow is observed. When Ta > 41, the flow displays structured three-
dimensional Taylor vortices. If Re > 4000, the flow becomes turbulent but still displays
fairly organized vortices.

In order to deal with the vibratory problem, it is unreasonable to face a detailed model of
such complex flow structures. Therefore, the following simplifying assumptions will be
adopted, concerning the flow field: (i) the flow is modelled as being two-dimensional and
incompressible, neglecting the radial graidents in the velocity and pressure fields; and (ii) the
dissipative effects due to turbulent shear stresses at the walls are modelled using semi-
empirical loss-of-head terms.

These assumptions are common when dealing with confined plane or annular flows,
where the field properties may be conveniently averaged across the fluid depth [see Black
(1969), Fritz (1970), Hirs (1973), Childs (1983), Nelson (1985), Axisa & Antunes (1992) or
Antunes et al. (1996)].

Concerning the shear stresses, several empirical correlations relate the friction coefficient
with the Reynolds number of the flow and other system parameters [see Wendt (1933), Vohr
(1968), Yamada (1962), Constantinescu et al. (1975) and Hashimoto & Wada (1989)]. In the
following analysis, as a final assumption, constant azimuthally averaged friction coefficients
will be used, which are also assumed independent of the vibratory motion (Grunenwald
1994). The basic assumptions of the present work were adopted in order to obtain a set of
flow equations which might be approached analytically. All aspects of the turbulent flow
which are deemed too complex to be modelled in a simple way were integrated in a single
empirical parameter—the flow-friction coefficient—which can be obtained from basic
experiments. Hence, the subtleties of the true three-dimensional flow (such as the actual
velocity profiles corresponding to Taylor vortices) are ignored when using this bulk-flow
approach.

Obviously, the price to pay for these simplifying assumptions is that the validity of the
theoretical model will diminish as the reduced gap of the annular flow increases. On the
other hand, a less restrictive approach would inevitably lead to numerical computations of
the three-dimensional highly turbulent flow [see, for example, relevant work by Arakere
& Nelson (1988), Hirsch (1991), Mateescu et al. (1994, 1995) and Gwynllyw et al. (1996)].
Even when such heavier computations are feasible, it is harder to get insight from a set of
specific numerical results than from simplified analytical solutions.

In this work, we consider a generic planar motion X (t) represented in Figure 2. A detailed
formulation for the flow equations has been presented elsewhere (Antunes et al. 1996) and
will not be repeated here. Under the previous assumptions, one obtains the continuity
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Figure 2. Geometry of the fluid annulus.

equation for incompressible flow,

oh 10
a-"_i@(hu):(l (1)

where R is the shaft radius, h(0, t) is the annular gap depth and u(0, ¢) is the gap-averaged
tangential flow velocity (see Figure 2). The momentum equation (projected in the tangential
direction) is written as

d 1o h op

where p is the fluid density, p is the gap-averaged pressure and the shear stresses at the rotor
and stator walls are given by

T, = 2pulul £,
T, = —2p(QR — u)|(@QR —u)l f,, 3)

where f, and f; are empirical friction coefficients, which depend on the flow Reynolds
number and on wall roughness. Among several empirical correlations, those suggested by
Wendt (1993) and Hirs (1973) are formulated as

f=ax(Re)’, (4)



108 J. ANTUNES ET AL.

where coefficients a and b are obtained from experiments. A comprehensive analysis of
friction correlations, in the context of the present work, was provided by Grunenwald
(1994). The shear stresses change in a quadratic way with the flow velocity and always
oppose the flow—hence the moduli in equations (3). This formulation may cause some
analytical difficulties, which will be discussed later in the paper.

The planar motion X (¢), leads to a dynamic flow gap which is very well approximated by

h(,t)~ H — X(t)cos 6. (5)

We shall be interested in the resulting dynamic flow force,

Fy() = — LR J (0, t)cos 0 do, 6)

where L is the immersed length of the rotor.

3. ANALYSIS OF THE FLOW EQUATION
3.1. POSSIBLE APPROACHES

Equations (1)—(3) are clearly nonlinear, and finding their analytical solution may be very
difficult or even impossible. We begin by discussing several possible approaches to this
problem and then present the actual method used in this work.

The direct solution of the flow equations seems quite straightforward and can be
summarized as follows. From the continuity equation (1) with a dynamic gap (5),
the fluctuating velocity u(0, t) is computed by integration. Then, u(0, t) is replaced in the
momentum equation, and the pressure field p(0, t) is computed by integrating equation (2)
with equation (3). Pressure will depend on two unknown time-functions, C(t) and D(t),
which stem from both integrations in 6. C(t) is given implicitly by differential equation (26)
by enforcing continuity on the pressure field over the annulus, which can be assumed when
neglecting cavitation phenomena. We will not bother with D(¢) because this externally
induced pressure term disappears when azimuthal integration (6) is finally applied to
compute the resulting flow force. The problem with this simple approach is an exponential
growth of the computations. After the integration of the momentum equation, one already
obtains an extremely lengthy formulation for p(6, t). This leads to a tedious estimation of
C(t) and renders the final integration (6) very problematic.

A different approach involves perturbation methods such as that of Lindstedt—Poincaré
[see, for instance, Khalil (1996) or Verhulst (1996)]. The pressure and velocity fields are
assumed in the form

Mz

p(0.t)~ 2, €"pu(0,1), (7)

m=0

u,t) ~ ", (0, ). (8)

0

MMz

When series (7) and (8) are replaced in equations (1) and (2), the original nonlinear
problem leads to a sesquence of linear equations where each term p,,(0, t) is obtained from
the previous p,,— (0, t) terms. A solution is obtained if such series converge. Unfortunately,
for the large rotor motions of interest here, many terms must be included in (7) and (8) to get
an adequate approximation of the velocity and pressure fields. Therefore, this approach also
leads to unmanageable computations.
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For a circular geometry it is tempting to solve equations (1)—(3) using a Fourier series
formulation for the pressure and velocity fields:

p(0, 1) ~ Ao(t) + % [B,(t)sin(nd) + C,(t)cos(nd)], )
u(0, t) = Do(1) + i [E.(t)sin(n0) + F,(t)cos(n0)]. (10)

When equations (9) and (10) are replaced in the continuity and momentum equations, one
obtains a system of 2N ODE:s in terms of the time-functions Ay(t), B,(t), C,(t), Do(t), E, ()
and F,(t). Because these equations are nonlinearly coupled, their analytical solution is
problematic and a time-step integration procedure must usually be used. A second draw-
back is that many terms must be accounted for in equations (9) and (10) to obtain an
adequate representation of u(0, t) and p(0, t) for large rotor motions.

3.2. ADOPTED APPROACH

A mixed approach which proved fruitful was adopted in the present work, which is now
summarized as follows. Because u(0, t) can easily be obtained by integrating the continuity
equation, a direct approach is followed at this stage. Hence, from equations (1) and (5), an
exact formulation for the velocity field is obtained, which includes the unknown function
C(t):

u(0,t) = F [ X(t), X (1), C(t), 0]. (11)
However, after replacing h(0, t) and u(0, t) in the momentum equation, which then reads
o gz ) _ F,Lx ), X (0, X (1), CO0. Cl0). 01, (12)

the pressure gradient is assumed in Fourier series form:
ap((a(;, Y ~ Ao(t) + i [B.(t)sin (nf) + C,(t)cos(nd)], (13)

n=1
where

Ao(t) = % Jn FA[X (1), X (1), X (1), C(2), C(t), 0] O, (14)
B,(t) = % fﬂ FA[X(6), X (1), X (1), C(¢), C(t), 6] sin(nd) d6, (15)
C,(t)= % jn F.[X (1), X (1), X (1), C(1), C(t), 0] cos(nb)do. (16)

Then, from equations (13) the pressure field is easily obtained as
N
p(0, 1) ~ Ag(1)0 + > [— B,(t)cos(nd) + C,(t)sin(nb)], (17)
n=1

where, to ensure the continuity of the pressure field, the following condition must apply:
Ao(1) =0, (18)

enabling the computation of C(¢).
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For an adequate representation of this pressure field, a large number N of terms must still
be included. However, we are mostly interested in the resultant fluid force Fyx(t) and not in
p(0, t). Hence, when formulation (17) is replaced in equation (6), the much simpler result is
obtained

F.(t)= — LR J‘ (— By (t)cos*0)do

= nLRB; (¢), (19)

which stems from the orthogonality properties of sin(mf) and cos(nf). Therefore, only
moderately difficult integrations leading to the terms A, (¢) and By (t) must be computed in
order to obtain an exact solution for the nonlinear flow force Fx(t)

Before applying the previously described methodology to specific cases, one should
notice that formulation (3) may cause some analytical difficulties, because the shear stresses
are given in several branches according to the local value of the (gap-averaged) flow velocity
u(0, t):

—3pu’fy —3p(QR —w?f,  if u/QR <0,
7,0, 1) + 1,00, 1) ={ Lpuf, —1p(QR —u)*f, if0<u/QR <1, (20)
1pu®f, + 1p(QR — w)*f. if u/QR > 1,

as shown in reduced form in Figure 3, for the specific case when f, =f, =f Indeed,
transitions between the branches of equation (20) cannot be decided priori, as they depend
on the spinning velocity € and rotor vibratory motion X (t), from which stems the velocity
field u(6, t). Such transitions are possible at low values 2, when the vibratory motion may
induce local flow velocities greater than QR or otherwise negative. Fortunately, this is rarely
the case for the industrial components of practical concern, which rotate at significant
spinning velocities or not at all. Namely, we can have one of the two situations discussed in
the following.

@+ x

Figure 3. Skin-friction stresses as a function of the reduced flow velocity (f, =f; = f).
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3.2.1. Equipment with moderate-to-high spinning velocities (pumps, for instance)

In this case, all dynamic conditions lead to flow velocities pertaining to the second branch of
equation (20), and the shear stresses are given as

u

1 1
7,0, 1) + 7,(0,1) = : purf, — 3 p(QR —u)*f, with 0 < OR

<1. 1)

3.2.2. Equipment with zero spinning velocities (squeeze-film dampers)

In this case, the flow velocity is positive (negative) along half of the shaft surface, while it is
negative (positive) on the opposite side. Then, the first and third branches of (20) apply; thus,

—sputfy —3pu’f, ifu <0,

22
Lou?f, + S pu?f, if u>0. @2

7,(0, 1) + 7,.(0,t) = {

For planar motions, because of the symmetry of the problem, branching will unambigu-
ously occur at 6 =0 and 0 = 7.

These two interesting cases will be now addressed, assuming that f, =f; =/ This
convenient simplification is adequate, except in quite extreme conditions, such as when the
roughness of the rotor and stator walls are very different (Grunenwald et al. 1996).

4. ANALYSIS OF ROTOR-FLOW SYSTEMS
4.1. SoLuTiON OF THE FLOW EQUATIONS

From equation (1), the velocity field is obtained as

R S

Then, from equations (2), (3) and (13), the pertinent time functions are obtained as
Ao(t) = — 2pRZHX (1) C(t)G3' () + 2pR2X () X (t) C(1) G$° (1)
— pRPQfC(1)G3°(r) + pR*(3 RQ’f — C(1)) GI°(1), (24)
Bi(1) = — pRPH(X(1)* G3' (1) + pRZX ()((X(1))* + C*(1))G3°(r) — pR*(X(1))* G2 (¢)
— pRPQfX (1)G5°(1) — pR*X (1) G1°(2), (25)

where each term G/(t) is given by the first nonzero coefficient of the Fourier series of the
function

_ (sin0)'(cos )

" [H — X(t)coss 0]

Fi0,1)

From equations (18) and (24), C(t) is implicitly given by the differential equation

X(0)X () + RHQ fc(t) 1 RO% 26

CO+ = X7 2

which unfortunately has not an explicit general solution. This aspect, which was already
noticed before (Antunes et al. 1996), will be discussed in the following section. On the other
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hand, equations (19) and (25) lead to the resultant flow force:

H—- /H?* —
X1

Fy(t) = — npLR3 [2

X205 X(t )} — npLR? [2RQf 0 — X0 X t):|

X2(0)/H? — X*(1)

_ anRS |:(H — J/H? _Xz(t))z (X(t))2:| _ nijR3 |: __)(—(tZ)(t))S/ZC(t)Z]‘

X3(t)/H? — X2(1) (H> - X
27
4.2. DISCUSSION OF THE RESULTS
The stationary solution of equation (26) is formally given by
[exp| F(r)dt]dt
C(t) =5 RQ*f # (28)
exp[F()d
where
Xt X(t) + RHQ
Fy = XOX© + RHOS 09)

H?* — X%

Although a closed-form solution is not in general available, there are some specific cases
where such a solution can be obtained.

4.2.1. Linearized motions of a centred rotor

For the linearized motions of a centred rotor, equation (26) reads

. RO 1
¢+ C0) = 3 R, (30)

leading to a constant stationary solution:
C(t)=Cy=%HQ. (31)

The physical meaning of C, is highlighted when equation (31) is replaced in the linearized
form of equation (23). Hence,

_ RQ R .
u@,t)=U, + 0 X(t)cos O + 7 X(t)sin 0, (32)

where the mean velocity of the bulk flow is given by

_ o_ RQ

Uy = i C - (33)
and we recover the classical assumption that the mean flow travels at half the tangential
speed of the shaft wall (which is only strictly true for centred rotors with f, = f, = f). Under
nonlinear conditions (large amplitude motions), the constant term (33) is replaced by
a function U(t) = (R/H)C(t), which is the global bulk-flow velocity. From the linearized
solution (27) and (31), the following force is obtained:

npLR3 K0 + RQf Q?
H

Flt) = - — X0 - X0 |

(34)
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where one can recognize typical terms of added mass and flow damping, as well as
a velocity-dependent negative flow-induced stiffness. Results (32)—(34) are in agreement
with the previous linearized study by Axisa & Antunes (1992).

4.2.2. Linearized motions of an eccentric rotor

Let us consider now the linearized motions of an eccentric rotor, for a frictionless flow
(f=0). The rotor displacement X (¢) is given by a constant eccentricity X, and a (small)
fluctuating term X (¢). Then, equation (26) leads to the following result:

1 X\ 1X,
=3 HQ[I - <ﬁ> } —3 7 X0 (35)

and, from the linearized form of equation (23), the velocity field follows

u(,t) =

RQ H?*— X2 RQ[(H?>— X%)cos0 X, o
2H H — Xocos0 ' 2H | (H— Xocos0)> H — Xgcos |* !

S0 ¢, (36)

R—MM
+ H— Xgcos0 ™!

where one recognizes the eccentricity-dependent steady velocity of the co-rotating flow and
the fluctuating terms. From equations (27) and (35) we obtain the corresponding fluctuating
force:

—mpLR3[ Q> X, /H?>—X%| —npLR*[ 2H*> —2H./H* — X} ..
Fx(t) = ———— | — = X1(2)

H 4 H H X3
— npLR3 Q? H
P —— X (0 |, (37)
H 4 JH*> — X2

which reproduces the previously obtained linearized results for eccentric configurations
(Antunes et al. 1996). Furthermore, solutions (34) and (37) are identical for centred config-
urations with frictionless flow, as they should. The present nonlinear solution seems
therefore quite plausible.

5. ANALYSIS OF THE SQUEEZE-FILM DAMPERS
5.1. SoLuTioN oF THE FLow EQUATIONS

In this case, the overall bulk-flow velocity is obviously null and it is easy to verify that the
integration constant C(t) must be null,

J u(®, )dd =0=C(t) = 0. (38)
Thus from equation (23), the velocity field is given by
_ RX(9)sin0
u(6,1) = H— X(t)cos0’ (39)

the flow field is anti-symmetric

u(@,t)= —u(—0,1), (40)
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and
. u@,6)>0 if0<6l<mn,
X(t)zoj{u(e,t)go if —n<0<0,
(41)
. u@,0)<0 if0<f<mn,
X(I)Soz{u(e,nzo it —n<0<o0.

Thus, equations (22) can be used without ambiguity. When computing By (t), integration
must proceed as follows:

Bi() =~ f ’ F,[X(0), X (0), X (1), 0]sin 0 dO

+ % J F,[X(2), X(2), X (), 0] sin 0 do, (42)

and one obtains the resultant fluid force

. L H—VH> = X2(1) . - S H—-JH = X0 o,
Fx(t) = — npLR [2 X20) X(t):| npLR |: X0 JHT = X°0) (X (1) :|

3 [2Rf2HX(t) + (H* — X*(t))In((H — X(1))/[H + X (t)])
—npLR> | — 3 5 5
i X°()(H” — X*(1)

mmmq.

(43)

5.2. DiscussioN oF THE RESULTS

The force in equation (43) has three terms: an unsteady inertia term, a convective inertia
term and a dissipative term, respectively. When comparing our solution (43) with the long
cylinder solution for the normal instantaneous squeeze film force in Lu & Rogers (1994), we
observe that: (i) the unsteady inertia term is exactly the same in the two solutions; (ii) our
convective inertia term is of the same order of magnitude as in Lu & Rogers’ solution which
is 8/5 greater; and (iii) our dissipative term is obviously qualitatively different, because it was
deduced assuming a loss-of-head model while Lu & Rogers’ model assumes viscous flow.
However, for low Reynolds numbers and small instantaneous eccentricity, it can be shown
that the two dissipative terms are of the same order of magnitude.

One can note that the first two terms of equation (43) are the same as in the nonlinear
solution (27) of the rotor-flow problem. Obviously, the other terms of equation (27) do not
appear in equation (43), because 2 and C(¢) are null. Notice that solution (27) is based on the
assumption that the shear stresses were given by the second branch of equation (20).
However, transitions between the different beanches are possible at low values of 2, as
mentioned before. This simplification leads to a nonlinear model (27) without a dissipative
term dependent on X ()| X(¢)| and independent of Q. However, the squeeze-film solution
(43) presents a new nonlinear term—which could “solve” the lack of such dissipative term in
solution (27), when Q = 0:

3 |:2Rf2HX(t) + (H* — X?(t))In([H — X(0)]/[H + X(1)])
Fg= —npLR°| — 3 2 2
n X>(0(H” — X=(1)

X(t)IX(t)I].
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Then, it is tempting to combine solution (27) and (42), in order to obtain an approximate
general solution:

[ H— JH*— X))
Fx(t) = — npLR?*| 2
X() np i XZ([)

)“((z)} — mpLR® [ZRQfH — VX0 X(t):|
X2(0)/H: — X2(0)

— 7pLR? (H — JH?* — X?(t))? (X(t))2:| . anR3|:— )((t)(t))3/2 Cz(t):|

L X2(0)/H? — X2(1) (H* — X?
[ 2RF2HX (1) + (H? — X)) In([H — XOI/[H + X)) o, ¢
— mpLR s COHE — X°0) X(t)lX(t)I}
(44)

Indeed, note that formulation (44) leads to solution (43) when Q = 0. Also, the ratio

between the second and the last term in (44)—the F, and Fj dissipative terms,
BMP

Fy
Fy

n HJH? — X2(1) — (H? — X2(t) QX (1)
2HX(t) — (H* — X*(t))In([H — X (1) J/[H + X(1)]) | X ()|

(45)

shows that the relative magnitude of the squeeze-film term decreases as the rotor spins
faster. On the other hand, squeeze-film effects are comparatively higher when X (t) - H, as
expected.

6. ANALYSIS OF THE COUPLED SYSTEM
6.1. RoTtor-FLow DyNAMICAL EQUATIONS

The motion equation of the rotor-flow coupled system reads

M,X(t) + C, X (t) + K, X(t) = Fx(t) + F.(¢), (46)

where F,(t) stands for any external forcing function, and Fyx(t) is given by the nonlinear
fluidelastic force (27), together with equation (26) for C(t). Under linearized conditions,
equation (27) is replaced by formulation (34) or (37) and the autonomous version of
equation (46) becomes

M X (1) + C,X(t) + K, X(t) = Fx[X (1), X (1), X (1)]
=M, X(t)+ C,X(1)+ K, X(1) (47)
or
MX(t) + C.X(1) + K.X(t) =0, (48)

where M., C, and K, are the coupling flow-structure operators. The modal frequencies and
damping values, as well as the stability of the system, stem from the complex eigenvalues:

_C.+ JCTTAMK,
< + . (49)

oM,

)“j:0j+1wj:

For planar motions of immersed rotors, the modal frequency w;(€2) decreases when the
spinning velocity is augmented, as shown in Figure 1(b). The corresponds to the first, lower
branch of the modal chart of an orbiting rotor, as typically shown in Figure 1(a). For planar
motions, the system becomes linearly unstable by divergence when the modal frequency



116 J. ANTUNES ET AL.

becomes null. Physically this is due to the negative flow-induced stiffness term in equations
(34) or (37).

6.2. SIMULATION OF THE NONLINEAR MOTIONS

Under nonlinear conditions, the system responses must be computed by time-step integra-
tion of equation (46)—with the flow force (27) and some external excitation (for instance, to
simulate the flow turbulence or a shaker). The implicit formulation for C(t) is then easy to
deal with, as equation (26) can be numerically integrated along with equation (46). It is
convenient to formulate equations (26) and (46) as a system of three first-order coupled
differential equations,

) [z,
FIZ,.25.75] L,
Mg+ M [Z,] M+ M [Z,] °
7, G[Z.,2,]175; + H

ZZ =

), (50)

where
Zy=X(t);, Z,=X(t); Z3=Cls)

and [, G, M, are obvious, from equations (26) and (27).
Under linear conditions, when an explicit solution C(t) is obtained, equation (50) leads

simply to
Z, 0 1 Z, 0
= . 51
| e e e s

M. M. M. F(t)

Equation (50) was solved using an explicit algorithm of the Runge—Kutta type, with an
error controlled time-step based on the fourth- and fifth-order approximations (Press et al.
1992; Shampine 1994). The external excitation was a Gaussian noise, low-pass filtered
outside the frequency range 0 ~ 15 Hz. The integration time-step was At = 103 s, and 10 s
of the system responses were simulated, for each spinning velocity. Numerical simulations
were based on two configurations, as shown in Table 1.

TaBLE 1

Parameters of the numerical simulations

Rotor A Rotor B
R (m) 0-044 0-047
H (m) 0-006 0-003
H/R 014 0-06
M (kg) 8 8
C, (N s/m) 3 4
K (N/m) 2:2 x 10+ 2:2 x 10%
M, (kg) 14 43
C, (N s/m) 53 189
wy (Hz) 83 83

o, (Hz) 50 33
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Figure 5. Vibratory response of centred configuration A at high spinning velocity (800 rpm).
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Figure 6. Vibratory response of centred configuration B as a function of the spinning velocity (0—200 rpm).

The modal frequencies of these configurations are compatible with the random excitation
used. Furthermore, the parameters in Table 1 are those of our experimental set-up
(Section 7.1). Here w, is the modal frequency of the structure in air and , is the modal
frequency of the nonrotating immersed rotor. The lower values of w, reflect the effect of the
fluid added mass M ,—see equations (34) and (37). C, is the viscous damping in still fluid,
which is included with the structural damping C;. A typical flow friction coefficient of
f =001 was used when computing the dissipative terms related to the rotor velocity €.
With both configurations, simulations were run for centered rotors and also for systems
initially eccentric by 60% of the radial gap.

Figure 4 shows sample results obtained at a low spinning velocity (100 rpm), for centred
configuration A. As expected, the response is almost Gaussian with maximum energy about
5 Hz, in agreement with Table 1. This can be observed in the spectrum of the response, as
well as in the time-histories of the displacement and velocity. In the third time plot, the
dimensionless function K (t) = C(t)/(HQ) clearly approaches the theoretical value 3 of the
linearized analysis presented in Section 6.1. Hence, for low ecentricities and spinning
velocities, the nonlinear flow formulation [equation (27) subject to equation (26)] leads to
results which are almost identical to those stemming from our previous linearized analysis
[equations (34) with (31)].

Figure 5 shows a completely different scenario. Indeed, the same configuration is now
simulated at 800 rpm—a spinning velocity which is beyond the divergence instability
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Figure 7. Vibratory response of centred configuration B as a function of the spinning velocity (300—500 rpm).

threshold (at about 750 rpm). Here the rotor vibration is very nonlinear and motion
amplitudes are enough to overcome the annular gap. The obstruction of the co-rotating
flow is displayed by the sudden decreases in U(t).

Obviously, a linearized solution is now far from the actual nonlinear dynamics of the
system. A systematic picture of the typical rotor dynamics is presented in Figures 6—8. Here,
time-responses X (t) of centred configuration B are shown as a function of €, together with
the corresponding histograms. One can notice the progressive transition from Gaussian to
non-Gaussian behaviour. Also the decrease of the response frequency, as predicted by linear
theory, is followed by a progressive increase when nonlinear effects dominant (at about
500 rpm). The transition between 600 and 700 rpm is also interesting, because the essentially
symmetrical motion is replaced by a very asymmetrical response. Such a behaviour is due to
a significant Bernoulli effect in the flow, at higher spinning velocities, which induces an
increase of rotor drift—see the first term of solution (37), as well as Antunes et al. (1996) and
Grunenwald et al. (1996).

7. TEST RESULTS
7.1. EXPERIMENTAL SET-UP

Tests were performed with the same setup used in previous work by Grunenwald et al.
(1996), where experimental details are available. It consists of a vertical shaft with radius
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Figure 8. Vibratory response of centred configuration B as a function of the spinning velocity (600—800 rpm).

R (dependent on the configuration tested, see Table 1) and length L = 250 mm. The shaft is
mounted using a pair of conical bearnings, assembled in a rigid support plate maintained by
four flexible struts. Planar motions were insured by using asymmetric supports (with
rectangular cross-section) providing Ky> K x. The shaft rotates inside a rigid outer shell, the
full length of the annular gap being filled with water. The shaft-to-shell reduced eccentricity
could be varied. Steady shaft rotation was provided by an electric motor, with precise
velocity control, using a double Cardan joint for torque transmission. To avoid surface
effects and flow ventilation at higher spinning velocities, a large-gap labyrinth was used
which proved to be adequate. Rotor vibrations were sensed with an eddy-current displace-
ment transducer, located near the support plate. Excitation was provided by a noncontact-
ing electro-mechanical shaker, driven with filtered random noise. The excitation force was
measured using a piezo-electric transducer. For several values of ¢ and @, the modal
parameters of the coupled system and the nonlinear response frequencies were identified
using our computer-based signal-processing software.

7.2. RoTor DyYNAMICS

Figure 9 presents the theoretical and experimental response frequencies, as a function of Q,
for both centred and eccentric configurations B. Here the nonlinear numerical simulation
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results are shown with the modal predictions issued from the linearized model. In both
configurations, the nonlinear theory is in better agreement with the experimental results.
For the centred case, departure from the linearized model arises only near the instability
boundary. However, the nonlinear behaviour of the eccentric configuration is already
displayed at lower spinning velocities. Some quantitative discrepancies between the
theoretical and experimental results may be due to the three-dimensional axial structure
of the flow, which was induced by a low value of the experimental ratio L/R. Such an
effect is obviously not accounted for in the theoretical model [see also Grunenwald
et al. (1996)].

8. CONCLUSIONS

In this paper, we presented a theoretical formulation for the nonlinear planar motions of
a rotor immersed in a confined fluid. The solution approach in this work enabled us to keep
analytical complexities at a manageable level. The nonlinear solution obtained is compat-
ible with the linearised solutions previously developed by the authors. It provides insight on
the system responses at higher eccentricities and spinning velocities. The qualitative agree-
ment between the nonlinear theory and experimental results is encouraging, in spite of some
quantitative discrepancies which might be due to the finite length of the experimental rotor.
This nonlinear theoretical model is currently being extended to cope with three-dimensional
orbital rotor motions.
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APPENDIX: NOMENCLATURE

A,(?), B,(1), C,(t) Fourier coefficients of the pressure series formulation
C(t) integration constant (related to the average bulk-flow velocity)
Co integration constant (stationary solution)
C. coefficient of velocity coupling in the flow—structure system
C, coefficient of velocity coupling by the flow
Cs coefficient of structural damping
C, coefficient of viscosity damping
h(0, t) local gap
f friction coefficient
£ friction coefficient at the rotor wall
Js friction coefficient at the stator wall
Fyx coupling force by the flow
H average annular gap
K reduced average flow velocity
K. coefficient of displacement coupling in the flow—structure system
K, coefficient of displacement coupling by the flow
K coefficient of structural stiffness
Ky coefficient of structural stiffness (X-direction)
Ky coefficient of structural stiffness (Y-direction)
L rotor length
M, coefficient of inertial coupling in the flow—structure system
M, coefficient of inertial coupling by the flow
M coefficient of structural inertia
(0, 1) local pressure
R rotor radius
Re Reynolds number of the flow
t time
Ta Taylor number of the flow
u(0,t) local tangential velocity
U, average bulk-flow velocity
Ut global bulk-flow velocity
X(t) rotor displacement
2,275,274 variables of the state-space formulation
reduced gap
g rotor excentricity
A eigenvalues of the flow—structure system (mode j)
0 azimuthal angle
v kinematic viscosity of the fluid
o fluid density

o; real part of the eigenvalues (related to damping)
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shear stresses at the rotor wall

shear stresses at the stator wall

circular frequency (mode j)

modal frequency of the rotor (with no fluid)
modal frequency of the flow—structure system
spinning velocity of the shaft
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